首页>>聊城气化渣烘干机

聊城煤气化渣资源化利用主要体现在那些行业

气化渣烘干机 环保检测小马 2022-10-04 10:35:20 25792

目前,国内外对于煤聊城气化渣应用的研究主要集中在锅炉掺烧、建工建材(水泥、混凝土及砖材等)、吸附、工业材料、农业等方面。市政聊城污泥干化聊城污泥处置、铝型材污泥减量及资源化、聊城煤泥资源化、钢渣综合处理及利用等,聊城中科领向在相关领域已取得核心创新技术8项,获得专利18项。欢迎广大企业、政府咨询13323933290马经理。

4.1 煤聊城气化渣脱碳研究现状

煤气化渣用于锅炉掺烧,水分高、残炭较低、热值不够,而用于水泥替代剂,残炭较高限制了掺入比例,炭灰相互制约,阻碍了其资源化利用,气化渣的炭灰分离尤其重要。现有煤气化渣脱碳技术主要有浮选法、重选法、燃烧法、电选法等,目前主要脱碳技术仍为浮选法,燃烧法和电选法研究较少[30]。

张晓峰等[31]分析了煤气化细渣浮选脱碳的可行性,并提出分级浮选技术,对于粒度小于0.04 mm气化细渣宜采用旋流-微泡浮选柱,而对于0.04 mm以上的气化细渣适合采用机械搅拌式浮选机进行浮选。GUO等[32]对煤气化细渣进行3次浮选,残炭的收率为52.65%,并对细渣和浮选得到的残炭进行了比较,烧失量由24.49%增加到64.47%,热值由6.22 MJ/kg升到19.48 MJ/kg。王晓波等[33]采用载体浮选法,用“一粗两精一扫”的浮选流程对煤气化细渣进行浮选,气化细渣的灰分由68%降至24.62%,精炭热值为26.41 MJ/kg,尾矿灰分为96.43%,可燃物回收率为94.61%。

李慧泽等[34]根据煤气化渣残炭与灰密度差异,利用水介质旋流器对气化渣进行炭灰分离,并通过单因素试验验证了对煤气化渣粒级大于0.074 mm进行水介质旋流炭-灰分离的可行性。任振玚等[35]采用水介质重力分选对GSP煤气化细渣进行一次分选得到了富碳、富灰、高灰产品,富碳的产率为8.37%、灰分为12.69%、总比表面积为287.82 m2/g,微孔比表面积为155.89 m2/g,富灰产率为24.36%、灰分为95.68%,实现了残炭与灰的高效分离与富集,并将富碳产品制备成活性焦应用于脱硫脱硝,且脱硫值为32.63 mg/g,脱硝率为27.50%。

4.2 在锅炉掺烧方面的应用

煤气化细渣较粗渣含碳量高,热值一般在8.37 MJ/kg,但低于现在工厂大多配套的循环流化床锅炉的入料更低热值14.64 MJ/kg,目前主要与燃料煤按一定比例在锅炉掺烧,与锅炉运行状态和气化细渣含碳量、水分有关[36]。

徐文静[37]将煤气化细渣与煤掺混进行热重分析,发现气化细渣和煤掺烧存在着一定协同效应,掺混煤的比例越高,其可燃性和综合燃烧特性越好。DAI等[38]采用热重分析了煤气化细渣燃烧和煤气化细渣与煤混合燃烧特性,分别测试其在煤粉炉和流化床炉中的可燃性,结果表明,煤气化细渣的碳含量大于40%,热值大于16 MJ/kg,此外,煤气化细渣的燃烧性质比无烟煤差,接近于高灰煤,且有一定的选择性,共燃具有协同效应;在煤粉炉中燃烧温度大于900 ℃,氧气体积分数大于10%时,煤气化细渣可以充分燃烧,比在流化床炉中燃烧效率高。

综上,煤气化渣应用于锅炉掺烧方面技术上具有可行性,但实际应用于锅炉掺烧,还要考虑经济效益,对锅炉燃烧效率和长时间持续掺烧对锅炉系统稳定性的影响等。锅炉掺烧是就地解决煤气化渣的有效途径,可减少化工厂运输成本,利用煤气化渣的热值,实现煤气化渣的减量化,减少环境污染。

4.3 在水泥和混凝土填料方面的应用

煤气化渣在建筑材料方面的应用主要包括制备水泥、混凝土填料、陶粒、墙体材料以及砖材等,其中制备水泥、混凝土是煤气化渣规模化消纳的重要途径。因为煤气化渣中包含大量的活性SiO2和Al2O3,因此可作为水泥和混凝土的骨料和掺合料,但使用时其烧失量要求低于10%(GB/T 1596—2017《用于水泥和混凝土中的粉煤灰》)。

刘开平等[39]探讨煤气化渣应用于水泥混凝土的可行性,比较了掺加气化粗渣混凝土与普通混凝土的性能,发现掺加研磨后粗渣的混凝土的抗压强度明显高于基准混凝土,原因是大量非晶态活性物质在水化过程中生成了硅酸钙凝胶,增加了混凝土的强度,同时掺加气化渣可以减小混凝土干缩率,研磨前后粗渣混凝土较基准混凝土最终干缩率分别降低了13.0%、3.5%。盛燕萍等[40]研究发现掺加20%的煤气化渣的水泥稳定碎石更大干密度为2.46 g/cm3,更佳含水量为6%,煤气化渣可取代水泥中的部分矿物成分用于道路基层材料,且有利于水化产物后期强度的增加。同时发现煤气化渣水泥基层材料劈裂强度和抗压强度与PC32.5水泥基层材料相比虽略低,但满足道路基层的使用要求,而加入气化渣的水泥胶凝材料抗裂性能却优于PC32.5水泥胶凝材料。傅博等[41]研究表明在水泥浆体中掺入10%气化渣能起到成核作用,对水泥水化反应有利,增加水泥浆体中水化产物数量,与纯水泥相比,其初凝时间和终凝时间分别降低了2.7%和2.6%,在1、7和28 d龄期抗压强度分别增长了7.1%、6.9%和5.4%,提高了水泥浆体的抗压强度。LUO等[42]对600 ℃煅烧脱碳后煤气化粗渣和细渣作为水泥基材料的可行性进行了研究,结果发现掺入脱碳煤气化粗渣较细渣更有利于水泥砂浆的流动性,而抗压强度较低,由于脱碳煤气化粗渣和细渣的强度活性指数分别为100.9%和82.7%,根据工业标准,2者均可作为水泥基材料的活性添加剂,SEM结果表明,在水合后期,脱碳煤气化粗渣和细渣的原始形态受到严重破坏,2种脱碳煤气化渣协同使用可能对水泥基材料的流动性和强度有更好的作用,此外在脱碳过程中需消耗能量和产生CO2。YOSHITAKA[43]对IGCC煤气化渣进行研磨和洗涤改性,进行了混凝土试验和骨料试验,研究其作为混凝土细骨料使用的可能性。结果表明,由该渣作为混凝土细骨料的抗压强度与使用天然砂的混凝土的抗压强度几乎相同。此外,IGCC煤气化渣混凝土的干燥收缩率和抗冻融性与使用天然砂制成的混凝土没有较大差异,该煤气化渣具有作为结构混凝土的可能性。可见,煤气化渣作为混凝土原料部分替代品改变了混凝土部分特性,如可以改变混凝土的强度、干缩率、抗裂性能、凝结时间等特性。

煤气化渣烧失量较高且已超过和行业标准,残炭属于惰性物质,较高的残炭含量抑制了煤气化渣与水泥或石灰之间的胶凝反应,阻碍水化物的胶凝体和结晶体的生长互相连接,降低混凝土的抗冻性和强度;此外,煤气化渣中SO3不得高于3%(GB/T 1596—2017),过多的SO3可能导致水泥混凝土中生成硫铝酸钙,体积膨胀,引起混凝土膨胀开裂[14,39]。这些对煤气化渣在建筑方面大量使用提出了挑战,对煤气化渣进行改性或提质后用于建筑方面是一条规模化消纳煤气化渣的路径。

4.4 在制砖方面的应用

制砖是煤气化渣在建筑材料方面的消纳途径,由于煤气化渣与工业砖的化学成分相似,将煤气化渣、粉煤灰和煤矸石等作为主要原料,混合料中的SiO2、Al2O3、Fe2O3经水化形成的硅铝型玻璃体与水化后的CaO反应后形成水化硅(铝)酸钙胶状玻璃体,再经特殊工艺可制备出可以满足标准的工业用砖,可实现节能环保并具有发展前景。

章丽萍等[44]通过预搅拌、陈化、二次搅拌、成型、蒸汽养护等工序,以煤气化渣和锅炉渣为主材料,石膏为激发剂,生石灰、除尘灰、水泥为辅料,按气化渣、锅炉渣、石膏、生石灰、除尘灰、水泥质量分数分别为35.6%、32.4%、4.0%、6.0%、8.0%、14.0%,在100 ℃蒸汽养护18 h条件下可制备出免烧砖,其吸水率为14%,抗压强度和冻融后抗压强度分别为22.25 MPa和22.13 MPa,冻融质量损失率为0.7%,符合JC/T 422—2007《非烧结砖垃圾尾矿砖》和JC/T 239—2014《蒸压灰砂砖》标准。尹洪峰等[17]以气化炉渣、黏土为原料,将气化粗渣和细渣按气化炉排出比例混合磨至0.08 mm与黏土按质量比7∶3混合,加入10%纸浆废液作为结合剂,采用半干法压制成型,制备出符合MU7.5等级以上建筑用砖,与一般黏土砖相比,具有密度低、气孔率高等优点。张宏生等[45]以煤气化渣为主要原料,采用“捏合练泥—挤出成型—烘干—烧结”工艺制造多孔烧结砖,所制砖烧结均匀,缺陷少。何桂玉和包宗义[46]以煤气化渣、水泥、土体稳定剂表面活性剂和助剂等为原料制造免烧砖,煤气化渣的用量更大可达95%,且制造的免烧砖无需烧制、陈化和蒸汽养护,自然养护即可,但是应考虑气化渣中残炭的限值和氧化钙含量的影响。张成和裴超[47]以工业固体废弃物煤气化渣为主要原料,配以水泥、粉煤灰,当气化渣、水泥、粉煤灰比例为6∶3∶1时,经过混合、消化、压制成型和蒸压养护制成符合JC/T 239—2014《蒸压粉煤灰砖》要求的蒸压砖。可见,以煤气化渣为原料可以制出免烧砖、黏土砖、蒸压砖、烧结砖等,且制出的砖符合相关标准。

煤气化渣的多孔性以及残炭会改变砖的特性(密度、吸水率、线性干燥收缩等),适量应用可以满足相关要求。煤气化渣制砖开发配方科学合理、制备过程简单、能量消耗较低、产品质量易合格,是煤气化渣应用的重要方式。

4.5 在吸附方面的应用

煤气化渣含有一定的残炭,结构疏松多孔,具有丰富的多孔结构和较大比表面积,多作为吸附剂处理工业废水和其他污染物。

胡俊阳等[48]以煤油为捕收剂,2号油为起泡剂,通过浮选机浮选煤气化渣得到精炭,并将精炭用于甲基橙模拟染色废水吸附处理试验中,研究发现在吸附剂添加量为0.2%、模拟废水初始质量浓度为60 mg/L、处理时间为60 min的条件下,该精炭对废水中甲基橙的去除率为97.90%。朱仁帅等[49]通过水煤浆气化飞灰与煤焦油混合均匀,经压块成型、干燥、炭化、水蒸气活化后制备成活性炭,将气化飞灰与NaOH按一定比例混合经熔融活化后,再经陈化、水热、过滤等制备出复合吸附材料,并发现制备的活性炭碘吸附值随着炭化时间与活化时间的增加而增加,吸附量达582.19 mg/g,复合吸附材料的更大铜离子脱除率为40.63%。凌琪等[50]在动态膜生物反应器(DMBR)中投入气化渣处理造纸污水,降低了反应器Zeta电位值,有利于减缓膜污染,发现其可提高污染物去除率,反应器对COD、NH3-N、色度的平均去除率分别提高至96.74%、90.86%、94.30%。DUAN等[51]用煤气化渣吸附含低浓度汞的废水,发现其是一个快速有效的过程,吸附平衡仅需10~40 min(图4,其中DPGFS、DPGCS、CWSGS、AC分别为干粉气化细渣和粗渣、水煤浆气化渣、活性炭),且吸附过程符合拟二级动力学速率方程。虽煤气化渣的吸附容量略低于活性炭,但对汞离子表现出良好的选择性,且低浓度的Cr3+和Cu2+对汞的吸附无影响。可见,煤气化渣的吸附能力与残炭含量有关,残炭经一定处理具有活性炭的性质。煤气化渣虽没有活性炭对某些物质的吸附能力强,但具有低成本和环境效益,作为吸附剂有很好的应用前景。



相关推荐